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A systematic theory for the scaling of the Nusselt number Nu and of the Reynolds
number Re in strong Rayleigh–Bénard convection is suggested and shown to be
compatible with recent experiments. It assumes a coherent large-scale convection roll
(‘wind of turbulence’) and is based on the dynamical equations both in the bulk and
in the boundary layers. Several regimes are identified in the Rayleigh number Ra
versus Prandtl number Pr phase space, defined by whether the boundary layer or
the bulk dominates the global kinetic and thermal dissipation, respectively, and by
whether the thermal or the kinetic boundary layer is thicker. The crossover between
the regimes is calculated. In the regime which has most frequently been studied in
experiment (Ra <∼ 1011) the leading terms are Nu ∼ Ra1/4Pr1/8, Re ∼ Ra1/2Pr−3/4 for

Pr <∼ 1 and Nu ∼ Ra1/4Pr−1/12, Re ∼ Ra1/2Pr−5/6 for Pr >∼ 1. In most measurements
these laws are modified by additive corrections from the neighbouring regimes so that
the impression of a slightly larger (effective) Nu vs. Ra scaling exponent can arise.
The most important of the neighbouring regimes towards large Ra are a regime with
scaling Nu ∼ Ra1/2Pr1/2, Re ∼ Ra1/2Pr−1/2 for medium Pr (‘Kraichnan regime’),
a regime with scaling Nu ∼ Ra1/5Pr1/5, Re ∼ Ra2/5Pr−3/5 for small Pr , a regime
with Nu ∼ Ra1/3, Re ∼ Ra4/9Pr−2/3 for larger Pr , and a regime with scaling Nu ∼
Ra3/7Pr−1/7, Re ∼ Ra4/7Pr−6/7 for even larger Pr . In particular, a linear combination
of the 1

4
and the 1

3
power laws for Nu with Ra , Nu = 0.27Ra1/4 + 0.038Ra1/3 (the

prefactors follow from experiment), mimics a 2
7

power-law exponent in a regime
as large as ten decades. For very large Ra the laminar shear boundary layer is
speculated to break down through the non-normal-nonlinear transition to turbulence
and another regime emerges. The theory presented is best summarized in the phase
diagram figure 2 and in table 2.

1. Introduction
The early experiments on turbulent Rayleigh–Bénard (RB) convection in air cells

with Prandtl number Pr ≈ 1, summarized by Davis (1922a, b), showed a power-law
increase of the Nusselt number Nu with the Rayleigh number Ra , namely, Nu ∼ Raγ

with γ = 1
4
.† However, in these early experiments only relatively small Rayleigh

numbers Ra <∼ 108 were achieved. Later, when RB experiments with larger Rayleigh

† The symbol ∼ means ‘scales as’ throughout the text, not ‘order of magnitude’. The prefactors
are determined in § 4.
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numbers and in water cells with Pr ≈ 7 were done, the power-law exponent γ turned
out to be larger than 1

4
. The elegant theory of marginal stability by Malkus (1954),

resulting in γ = 1
3
, seemed to describe those experiments.

In the late 1980s, Libchaber et al.’s experiments done at the University of Chicago
on high Rayleigh number RB convection in a helium gas cell with Prandtl number
Pr ≈ 1 revealed new and unexpected scaling for the Nusselt number as a function of
the Rayleigh number, namely Nu ∼ Raγ with γ = 0.282± 0.006 (see Heslot, Castaing
& Libchaber 1987; Castaing et al. 1989). The Reynolds number Re, characterizing
the wind near the walls, i.e. the large-eddy mean flow, scaled as Re ∼ Raα with
α = 0.491± 0.002 (Castaing et al. 1989). These results were reproduced and extended
in many experiments and numerical simulations, see Solomon & Gollub (1990), Wu
& Libchaber (1991), Wu (1991), Procaccia et al. (1991), Werne (1993), Chilla et al.
(1993), Siggia (1994), Cioni, Ciliberto & Sommeria (1995), Villermaux (1995), Kerr
(1996), Shen, Tong & Xia (1996), Takeshita et al. (1996), Ciliberto, Cioni & Laroche
(1996), Cioni, Ciliberto & Sommeria (1997), Xia & Lui (1997), Chavanne et al.
(1997), Qiu & Xia (1998), Du & Tong (1998), Lui & Xia (1998), Benzi, Toschi &
Tripiccione (1998); for review articles, which also summarize the results of earlier
experimental, theoretical, and numerical work, we refer to Siggia (1994), Cioni et al.
(1997), Zaleski (1998). From all these experiments at first sight it seems that at least
the scaling exponent γ ≈ 0.282± 0.006 ≈ 2

7
is very robust.

Various theories were put forward to account for the scaling of the Nusselt number
Nu and the Reynolds number Re as functions of the Rayleigh number Ra and
the Prandtl number Pr . These include the Chicago mixing zone model (Castaing
et al. 1989) and the theory by Shraiman & Siggia (1990), both reviewed in Siggia
(1994), Cioni et al. (1997), Zaleski (1998). The main result of the Chicago model
is Nu ∼ Ra2/7. The Chicago group did not focus on the Pr dependence as only
experiments with Pr ≈ 1 were done (Castaing et al. 1989). Later, Cioni et al. (1997)
added the Pr dependence in the spirit of the Chicago model and obtained

Nu ∼ Ra2/7Pr2/7, (1.1)

Refluct ∼ Ra3/7Pr−4/7. (1.2)

Here, Refluct refers to the velocity fluctuations and not to the large-scale mean
velocity (often denoted as the ‘wind of turbulence’) as Re does. This Prandtl number
dependence is only expected to hold for Pr < 1 (Cioni et al. 1997; Zaleski 1998).
On the other hand, the Shraiman–Siggia model, which assumes a turbulent boundary
layer (BL) and a thermal boundary layer nested therein (i.e. Shraiman & Siggia
implicitly assume a large enough Prandtl number), states

Nu ∼ Ra2/7Pr−1/7, (1.3)

Re ∼ Ra3/7Pr−5/7 with logarithmic corrections. (1.4)

For an extension of the Shraiman–Siggia theory to position-dependent shear rates
see Ching (1997). The Prandtl number dependence of the Nusselt number resulting
from the Castaing et al. (1989) model and from the theory by Shraiman & Siggia
(1990) are not contradictory, as (1.1) has been suggested for small-Pr fluids and (1.3)
for the large-Pr case. Indeed, in the large-Pr limit Zaleski (1998) derives the same
Pr-dependence (1.3) as in the Shraiman–Siggia theory also from the Chicago model.
However, both theories are based on rather different assumptions.

In recent years, the Prandtl number dependence of the Nusselt number has been
measured and comparison with the theories by Castaing et al. (1989) and by Shraiman
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& Siggia (1990) became possible. The first experiments were done with water and
helium RB cells. However, comparing Nu in water and in helium convection only
allows a small variation of the Prandtl number. From such experiments a small
decrease of Nu with increasing Pr at given Ra was reported by Belmonte, Tilgner &
Libchaber (1994): for Ra = 109 Belmonte et al. (1994) measured Nu = 76 ± 11 for
Pr = 0.7 and Nu = 48± 6 for Pr = 6.6. Much larger Pr variations are possible if RB
convection in mercury or liquid sodium is studied. Those experiments with a mercury
RB cell (Pr = 0.025) by Rossby (1969), by Takeshita et al. (1996), and by Cioni et
al. (1995, 1997) and with a liquid sodium RB cell (Pr = 0.005) by Horanyi, Krebs &
Müller (1999) reveal that Nu increases with Pr , which is consistent with the Cioni et
al. (1997) extension of the Chicago mixing zone model.

However, there seems to be indication that also the Chicago mixing zone model
cannot account for all phenomena observed in recent experiments: one of the most
startling observations is that there seems to be a small but significant trend of the
scaling exponent γ as a function of Pr . For Pr ≈ 5–7 (water) one has γ = 0.28–0.293
(Garon & Goldstein 1973; Tanaka & Miyata 1980; Siggia 1994; Lui & Xia 1998) for
Ra up to Ra ≈ 109 and an even larger γ ≈ 1

3
for larger Ra ≈ 109–1011 (Goldstein

& Tokuda 1980); for Pr = 0.7–1 (helium gas) it is γ = 0.282± 0.006 (Castaing et al.
1989); for Pr = 0.025 (mercury) γ = 0.247 (Rossby 1969) and γ = 0.26±0.02 (Cioni et
al. 1997) (for Ra < 109) have been measured; and for Pr = 0.005 (liquid sodium) it is
γ = 0.25 (Horanyi, Krebs & Müller 1999). Those and further experimental results are
summarized in table 1. Exponents between 0.25 and 0.33 have been measured! For
thermal convection in a water RB cell (Pr ≈ 5–7) with self-similarly distributed balls
on the bottom wall, the scaling exponent can even be as large as γ = 0.45, presumably
depending on the ball size distribution as found in Ciliberto & Laroche (1999).

Next, a breakdown of the γ ≈ 2
7

scaling regime at very large Ra has recently been

observed, possibly towards a scaling regime Nu ∼ Ra1/2, which had been predicted by
Kraichnan (1962) decades ago. For Pr = 0.025 Cioni et al. (1997) saw the breakdown
at Ra ∼ 2× 109 (and a startling small window with a local scaling exponent smaller
than 2

7
for Ra ∼ 5 × 108–2 × 109) while for Pr = 0.7–1.0 Chavanne et al. (1997)

observed it at Ra ∼ 1011. The transition around Ra ≈ 1011 in figure 3 of Siggia
(1994), showing Nu/Ra2/7 vs. Ra from the data by Wu (1991), may already be
interpreted as the same breakdown. On the other hand, Glazier et al. (1999) did not
observe such a transition. Thus, the experimental situation itself is not yet clear.

All these observations and also the more intuitive rather than equation of motion
based approach of Castaing et al. (1989) call for a re-examination and extension
of the existing scaling theories for thermal convection. Of course, a mathematically
rigorous derivation of Nu(Ra ,Pr) and Re(Ra ,Pr) is hardly possible. The known
rigorous bounds overestimate the measured Nusselt numbers by more than one order
of magnitude and are only able to give the scaling exponent of the Kraichnan regime
γ = 1

2
, see Howard (1972), Busse (1978), Doering & Constantin (1996).

Though without a strict mathematical derivation, the guideline of the presented
approach will be the dynamical equations for the velocity field u(x, t), the kinematic
pressure field p(x, t), and the temperature field θ(x, t),

∂tui + uj∂jui = −∂ip+ ν∂2
j ui + βgδi3θ, (1.5)

∂tθ + uj∂jθ = κ∂2
j θ, (1.6)

assisted by the appropriate boundary conditions at the bottom wall z = 0, the top
wall z = L, and the sidewalls of the cell. Here, g is the gravitational acceleration, β
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Reference fluid Pr Ra range γ

Ashkenazi & Steinberg (1999) SF6 1–93 109–1014 0.30± 0.03
Garon & Goldstein (1973) H2O 5.5 107–3× 109 0.293
Tanaka & Miyata (1980) H2O 6.8 3× 107–4× 109 0.290
Goldstein & Tokuda (1980) H2O 6.5 109–2× 1011 1

3

Qiu & Xia (1998) H2O ≈ 7 2× 108–2× 1010 0.28
Lui & Xia (1998) H2O ≈ 7 2× 108–2× 1010 0.28± 0.06
Shen et al. (1996) H2O ≈ 7 8× 107–7× 109 0.281± 0.015
Threlfall (1975) He 0.8 4× 105–2× 109 0.280
Castaing et al. (1989) He 0.7–1 <∼ 1011 0.282± 0.006
Wu & Libchaber (1991) He 0.6–1.2 4× 107–1012 0.285
Chavanne et al. (1997) He 0.6–0.73 3× 107–1011 2

7

Davis (1922) air ≈ 1 <∼ 108 0.25
Rossby (1969) Hg 0.025 2× 104–5× 105 0.247
Takeshita et al. (1996) Hg 0.025 106–108 0.27
Cioni et al. (1997) Hg 0.025 5× 106–5× 108 0.26± 0.02
Cioni et al. (1997) Hg 0.025 4× 108–2× 109 0.20
Glazier et al. (1999) Hg 0.025 2× 105–8× 1010 0.29± 0.01
Horanyi et al. (1998) Na 0.005 <∼ 106 0.25

Table 1. Power-law exponents γ of the power law Nu ∼ Raγ for various experiments. The ex-
periments were done with different aspect ratios; however, no strong dependence of the scaling
exponent γ on the aspect ratio is expected (in contrast to the prefactors, which do have an aspect
ratio dependence as found by Wu & Libchaber 1992).

the isobaric thermal expansion coefficient, ν the kinematic viscosity, κ the thermal
diffusivity, and L the height of the RB cell; the temperature difference between top
and bottom walls is called ∆.

The second feature of our approach introduced in § 2 is that we try to be as
systematic as possible. We will be able to identify four different main scaling regimes
for Re and Nu in the Ra ,Pr phase space, depending on whether the BL or the bulk
dominates the global thermal and kinetic energy dissipation, respectively. Three of
the four regimes consist of two subregimes, depending on whether the thermal BL
or the viscous BL is thicker. We also calculate the validity range of the scaling laws
and make predictions on the stability of the different regimes. In § 3 we compare
the power-law exponents of the theory with experimental data. In § 4 we try to
adopt the prefactors of the theory from some experimental information and compare
the resulting prefactors to further experiments. Section 5 contains a summary and
conclusions.

2. Boundary layer vs. bulk dominance of kinetic and thermal dissipation
2.1. Definitions

The parameter space of RB convection is spanned by the Rayleigh and Prandtl
numbers,

Ra =
βgL3∆

κν
, Pr =

ν

κ
. (2.1)

Our main focus is on the resulting Reynolds and Nusselt numbers,

Re =
UL

ν
, Nu =

〈uzθ〉A − κ∂3 〈θ〉A
κ∆L−1

, (2.2)
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where 〈.〉A denotes the average over (any) z-plane. Correspondingly, 〈.〉V used below
denotes the volume average. U is the mean large-scale velocity near the boundaries of
the cell. It is the remainder of the convection rolls which in the turbulent regime mani-
fests itself as coherent large-scale convection flow, as first discovered by Krishnamurti
& Howard (1981) and later found by various groups (see Zocchi, Moses & Libchaber
1990; Wu 1991; Castaing et al. 1989; Belmonte, Tilgner & Libchaber 1993, 1994;
Tilgner, Belmonte & Libchaber 1993; Siggia 1994; Xin, Xia & Tong 1996; Qui & Xia
1998). The existence of this ‘wind of turbulence’ is one of the central assumptions
of our theory. We consider this to be a weak assumption, given the overwhelming
experimental evidence. The effect of the wind is twofold: (i) in the region between the
wind and the cell wall a shear flow boundary layer will build up; (ii) the wind stirs
the fluid in the bulk. In the presented theory we consider the velocity fluctuations
in the bulk of the cell only as a consequence of the stirring by the large-scale roll.
Therefore, the Reynolds number Re based on the roll velocity rather than the one
based on the fluctuations Refluct in the bulk is taken as the more appropriate to
theoretically describe the bulk turbulence. Though the theory assumes the existence
of the large-scale wind, it does not make any statement on how the large-scale wind
contributes to the heat transport. There is experimental evidence by Ciliberto et al.
(1996) that it hardly does.

2.2. Decomposition of the energy dissipation

The starting points of the present theory are the kinetic and thermal dissipation rates

εu(x, t) = ν(∂iuj(x, t))
2, (2.3)

εθ(x, t) = κ(∂iθ(x, t))2. (2.4)

Their global averages 〈εu(x, t)〉V = εu and 〈εθ(x, t)〉V = εθ obey the following rigorous
relations, which are easily derivable from the equations of motion, see e.g. Shraiman
& Siggia (1990), Siggia (1994):

εu =
ν3

L4
(Nu − 1)RaPr−2, (2.5)

εθ = κ
∆2

L2
Nu . (2.6)

Dissipation takes place both in the bulk of the flow and in the boundary layers. Near
the walls thermal and kinetic boundary layers of thicknesses λθ and λu develop, which
are determined by the thermal diffusivity κ and the kinematic viscosity ν, respectively,
and which are in general different, depending on Pr . They are defined on the basis
of the temperature and of the velocity profiles, respectively. Whenever there exists a
thermal shortcut in the bulk due to the turbulent convective transport, the width of
the thermal boundary layer is connected with the Nusselt number by

λθ = 1
2
LNu−1. (2.7)

The thickness of the kinetic boundary layer can be expressed in terms of the Reynolds
number,

λu ∼ LRe−1/2. (2.8)

Here, we have assumed that there is laminar viscous flow of Blasius type (cf. §§ 39 and
41 of Landau & Lifshitz 1987) in the boundary layer; the lateral extent x of the BL
has been identified with the height L of the cell, reflecting that the wind organizes in
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the form of a large-scale roll. The transition to turbulence in the boundary layers will
be considered in § 2.6. Though for large enough Ra the total volume of the BLs is
rather small, their contribution to the global average dissipation may be considerable,
as the velocity and the temperature gradients in the BLs are much larger than in the
bulk.

In general, we decompose the globally averaged dissipation rates into their BL and
bulk contributions,

εu = εu,BL + εu,bulk , (2.9)

εθ = εθ,BL + εθ,bulk , (2.10)

where

εu,BL =

∫
06z6λu

+

∫
L−λu6z6L

dzν(∂iuj)
2/L = ν

〈
(∂iuj(x ∈ BL, t))2

〉
V

is the viscous dissipation taking place in the viscous BL,

εθ,BL =

∫
06z6λθ

+

∫
L−λθ6z6L

dzκ(∂iθ)2/L = κ
〈
(∂iθ(x ∈ BL, t))2

〉
V

is the thermal dissipation taking place in the thermal BL,

εu,bulk =

∫
λu6z6L−λu

dzν(∂iuj)
2/L = ν

〈
(∂iuj(x ∈ bulk, t))2

〉
V

is the viscous dissipation taking place in the bulk, etc.
This kind of thinking immediately suggests the existence of four regimes:
(I) both εu and εθ are dominated by their BL contributions;
(II) εθ is dominated by εθ,BL and εu is dominated by εu,bulk ;
(III) εu is dominated by εu,BL and εθ is dominated by εθ,bulk ;
(IV ) both εu and εθ are bulk dominated.
For (relatively) small Ra the BLs are thickest, therefore regime I is expected. On

the other hand, for large Ra the BLs are very thin and we will expect regime IV ,
provided that the volume reduction of the BL is more efficient than the dissipation
increase in the BLs due to the growing shear rate. Next, for small Pr the viscous BL
is smaller than the thermal one, λu � λθ , and we expect regime II . Finally, for large
Pr it is λu � λθ and we have regime III .

A priori it is not clear whether all four regimes can exist. However, after input of
some experimental information, we will see that they are likely to exist. We will also
calculate the scaling of the borders between the different regimes in the Ra ,Pr phase
space. Of course, these lines do not indicate sharp transitions but the range of the
change of dominance.

2.3. Estimate of bulk and BL contributions

The next step is to estimate the various contributions εu,BL, εθ,BL, εu,bulk , εθ,bulk of the
BL and the bulk dissipation from the dynamical equations (1.5) and (1.6), expressing
them as functions of Nu , Re, Ra , and Pr .

Bulk contributions

We start with the kinetic dissipation. As already outlined above, the theory assumes
that the bulk fluctuations with typical velocity ufluct originate from the large-scale
coherent flow with velocity U. If there is no such ‘wind of turbulence’, the following
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estimates cease to be valid; even the Reynolds number Re = UL/ν cannot be defined
properly. Clearly, this will happen in the regime of very large Prandtl numbers where
the flow is suppressed by the strong viscosity. Therefore, there will be a transition
line Pr(Ra) in phase space, defined by, say, Re = 50, beyond which the theory no
longer holds; we will calculate this line in § 2.5. Another limit of applicability is in
the very small-Pr range. Here, κ is so large that the heat is molecularly conducted,
thus Nu = 1. Other possible limitations of the basic assumptions of the theory will
be discussed in § 5.

The assumption of the large-scale velocity U stirring the bulk implies the picture
of a turbulent energy cascade in the bulk which in turn suggests how to estimate
the bulk dissipation rates, namely by balancing the dissipation with the large-scale
convective term in the energy equation following from (1.5),

εu,bulk = ν
〈
(∂iuj(x ∈ bulk , t))2

〉
V
∼ U3

L
=
ν3

L4
Re3. (2.11)

As argued before, we took as the relevant velocity scale the wind velocity U and
not the velocity fluctuations ufluct because it is U which stirs the fluid in the bulk.
This is a key assumption of the theory, justified by intuition and by the results. The
theory presented does not make any statement on the Ra-scaling of the typical bulk
fluctuations ufluct.

We explicitly remark that the findings on the Re dependence of the energy dissi-
pation rate in Taylor–Couette flow by Lathrop, Fineberg & Swinney (1992) do not
contradict (2.11). Lathrop et al. (1992) found that εuL

4ν−3Re−3 still depends on Re
even for large Re. However, their result refers to the global εu, not to εu,bulk . Possible
intermittency corrections are not taken into consideration in (2.11) as they are at
most small (see Grossmann 1995).

We note that strictly speaking there should be a factor (L − 2λu)/L on the right-
hand side of (2.11), as the average εu,bulk = 〈εu(x ∈ bulk , t)〉V refers to the whole
volume. However, it is assumed that the state is already turbulent enough, i.e. Ra
large enough, so that λu � L. The validity of this assumption limits the scaling ranges
to be derived.

The estimate of the thermal bulk dissipation εθ,bulk is slightly more complicated, as
the velocity field u(x, t) matters in the dynamical equation (1.6) for the temperature.
In particular, it matters whether the kinetic BL, characterized by a linear velocity
profile, is nested in the thermal one or if it is the other way round.

For the former case (λu < λθ , i.e. small Pr , see figure 1a) the thermal boundary
layer can be estimated in complete analogy to (2.11) as

εθ,bulk = κ
〈
(∂iθ(x ∈ bulk, t))2

〉
V
∼ U∆2

L
= κ

∆2

L2
PrRe. (2.12)

Note that corresponding to U in (2.11) we took the large-scale temperature difference
∆ in (2.12), not the typical temperature fluctuations ∆fluct . Again, this is a key
assumption, justified by the later results.

For the latter case (λu > λθ , i.e. large Pr , see figure 1b) we must realize that at the
merging of the (linear) thermal BL into the thermal bulk the velocity is not U itself,
but smaller by a factor λθ/λu < 1. Therefore, it is reasonable to assume that Uλθ/λu
is the relevant velocity for the estimate of εθ,bulk , i.e.

εθ,bulk ∼ λθ

λu

U∆2

L
= κ

∆2

L2
PrRe3/2Nu−1. (2.13)



34 S. Grossmann and D. Lohse

U

U

ku

kh

(a) U

ku

kh

(b)

kh

ku

.U

Figure 1. Sketch of the boundary layers, (a) for low Pr where λu < λθ
and (b) for large Pr where λu > λθ .

BL contributions

For εu,BL we follow an idea by Chavanne et al. (1997) and estimate, using (2.8),

εu,BL = ν
〈
(∂iuj(x ∈ BL, t))2

〉
V
∼ νU

2

λ2
u

λu

L
∼ ν3

L4
Re5/2. (2.14)

Here, U/λu characterizes the order of magnitude of ∂iuj and the factor λu/L accounts
for the BL fraction of the total volume. Again, this reasoning breaks down when
there is no large-scale ‘wind of turbulence’. Correspondingly, we estimate

εθ,BL = κ
〈
(∂iθ(x ∈ BL, t))2

〉
V
∼ κ∆2

λ2
θ

λθ

L
∼ κ∆2

L2
Nu . (2.15)

Equations (2.11) to (2.15) express the various dissipation contributions (and thus the
total dissipations εu and εθ , (2.9) and (2.10)) in terms of Ra , Pr , Re, and Nu . If
we insert (2.11) to (2.15) into the rigorous relations (2.5) and (2.6), we obtain two
equations, allowing Nu and Re to be expressed in terms of Ra and Pr . If we only
take the dominating contributions εBL or εbulk in εu and εθ , respectively, the formulae
for the four regimes I , II , III , and IVare obtained, describing pure scaling instead
of superpositions.

With this idea in mind, the scaling of the thermal boundary layer dissipation (2.15),
though correct, does not give new information. It coincides with the rigorous relation
(2.6). The physical reason is that the bulk is considered to provide a thermal shortcut.
Therefore, we make use of the dynamics in the thermal BL in more detail. We
approximate (systematically in order 1/Re) (1.6) by the dominant terms (cf. Landau
& Lifshitz 1987 or Shraiman & Siggia 1990; Cioni et al. 1997)

ux∂xθ + uz∂zθ = κ∂2
zθ (2.16)

in the thermal BL. Both terms on the left-hand side are of the same order of
magnitude as can be concluded from the incompressibility condition ∂xux + ∂zuz ≈ 0.
In the lower subregimes with λu < λθ the velocity ux must be estimated by U, in the
upper subregimes with λu > λθ it is as argued above ux ∼ Uλθ/λu, see figure 1. In
addition, ∂x ∼ 1/L and κ∂2

z ∼ κ/λ2
θ . Therefore, for λu < λθ we finally get

Nu ∼ Re1/2Pr1/2 (2.17)

and for λu > λθ we have

Nu ∼ Re1/2Pr1/3. (2.18)
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Equations (2.17) and (2.18) replace the correct (but useless) relation εθ ∼ εθ,BL which
does not add new information beyond (2.6).

2.4. Four regimes

We will start with the εθ,bulk dominated regimes (III and IV ).

Regime IV , εu ∼ εu,bulk and εθ ∼ εθ,bulk (large Ra)

Depending on whether λu is less or larger than λθ we must use (2.12) or (2.13),
respectively, for the εθ,bulk estimate. The former happens for low Pr , the latter for
large Pr . Therefore, we will give these two subregimes the index l for lower and u for
upper. At which line Pr(Ra) in phase space λu = λθ the crossover from the λu < λθ
to the λu > λθ will occur is not clear a priori. We will calculate this line λu = λθ later
with additional experimental information.

In regime IVl we use (2.11) for εu in (2.5) and (2.12) for εθ in (2.6) to obtain

Nu ∼ Ra1/2Pr1/2, (2.19)

Re ∼ Ra1/2Pr−1/2. (2.20)

We recognize the asymptotic Kraichnan regime (Kraichnan 1962), just as expected
for large Ra when both thermal and kinetic energy dissipation are bulk dominated.
Note that other lines of arguments can also lead to (2.19), see e.g. Kraichnan’s work
itself (Kraichnan 1962), Spiegel (1971), or our reasoning in § 2.6. Therefore, (2.19)
seems to be quite robust. The physics of this regime is that the dimensional heat
current Nuκ∆/L is independent of both κ and ν.

In regime IVu we substitute as before (2.11) for εu into (2.5) but now (2.13) instead
of (2.12) for εθ into (2.6) to obtain

Nu ∼ Ra1/3, (2.21)

Re ∼ Ra4/9Pr−2/3. (2.22)

The Nu scaling is the one also following from the theory by Malkus (1954).

Regime III , εu ∼ εu,BL and εθ ∼ εθ,bulk (large Pr)

Again we have to distinguish between the lower subregime IIIl with λu < λθ and
the upper one IIIu with λu > λθ . For IIIl we combine (2.14) with (2.5) and (2.12)
with (2.6) and get

Nu ∼ Ra2/3Pr1/3, (2.23)

Re ∼ Ra2/3Pr−2/3. (2.24)

This regime will turn out to be small and less important. The more important one is
IIIu: combine (2.14) with (2.5) and (2.13) with (2.6) to obtain

Nu ∼ Ra3/7Pr−1/7, (2.25)

Re ∼ Ra4/7Pr−6/7. (2.26)

This regime may be observable for large enough Pr when λu � λθ . To our knowledge
to date this regime has neither been observed nor predicted.

Later, we will find hints of this regime IIIu in the form of a subleading correction
to describe the data by Chavanne et al. (1997). It would be nice to perform further
experiments with large Pr to be able to more cleanly identify this postulated regime
IIIu. We note that it is not in contradiction with the upper estimate by Chan
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(1971), Nu 6 constRa1/3, holding in the infinite-Pr limit (for fixed Ra), and also not
in contradiction with the rigorous upper bound by Constantin & Doering (1999)
Nu 6 constRa1/3(1 + log Ra)2/3, holding in the same Pr →∞ limit. The reason is that
regime IIIu is for finite Pr; if Pr → ∞, then Ra → ∞ also, if one wants to stay in
regime IIIu.

Regime II , εu ∼ εu,bulk and εθ ∼ εθ,BL (small Pr)

Regime IIl: Combining (2.11) with (2.5) gives together with (2.17)

Nu ∼ Ra1/5Pr1/5, (2.27)

Re ∼ Ra2/5Pr−3/5. (2.28)

This regime should appear for small enough Pr when λu � λθ . Indeed, Cioni et al.
(1997) observed experimental hints of such a regime; also (2.27)–(2.28) have already
been derived by them in a similar way. A power law Nu ∼ Ra1/5 has already been
suggested by Roberts (1979).

Regime IIu: Because of the two competing conditions εθ ∼ εθ,BL (i.e. Pr small)
and λu > λθ (i.e. Pr large) such a subregime can at most be small. It will turn out
later that it will probably not exist at all. Nevertheless, for completeness we give the
scaling laws, resulting from now taking (2.18) and, as before, inserting (2.11) into
(2.5), namely

Nu ∼ Ra1/5, (2.29)

Re ∼ Ra2/5Pr−2/3. (2.30)

Regime I , εu ∼ εu,BL and εθ ∼ εθ,BL

Regime Il: This is the regime of (comparatively) small Ra whose scaling we obtain
from using (2.17) and substituting (2.14) for εu in (2.5), namely

Nu ∼ Ra1/4Pr1/8, (2.31)

Re ∼ Ra1/2Pr−3/4. (2.32)

We argue that this is the regime whose scaling behaviour has been observed in almost
all thermal turbulence experiments (see Heslot et al. 1987; Castaing et al. 1989;
Solomon & Gollub 1990; Wu & Libchaber 1991; Wu 1991; Procaccia et al. 1991;
Chilla et al. 1993; Siggia 1994; Cioni et al. 1995, 1997; Takeshita et al. 1996; Ciliberto
et al. 1996; Xin et al. 1996; Xia & Lui 1997; Chavanne et al. 1997; Qiu & Xia
1998; Lui & Xia 1998), but that in nearly all cases the pure scaling behaviour (2.31)
and (2.32) has been polluted by sub-dominant contributions from the neighbouring
regimes, as we will elaborate in detail in the next section.

Remarkably, it is this power law Nu ∼ Ra1/4 which was the first one suggested by
Davis (1922a, b) and which has been well known in the engineering literature for a
long time, see Faber (1995). It also holds for two-dimensional convection in the low
Prandtl number limit, as shown by Clever & Busse (1981) and Busse & Clever (1981).

Regime Iu: The scaling in Iu is obtained from equation (2.18) and combining (2.14)
with (2.5), namely

Nu ∼ Ra1/4Pr−1/12, (2.33)

Re ∼ Ra1/2Pr−5/6. (2.34)

Note that the Ra dependence is the same as in Il , but now Nu decreases with
increasing Pr . This behaviour is physically to be expected because due to increasing ν
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the convective heat transport is more and more reduced. And indeed, such a crossover
from increase to decrease of Nu with Pr has been observed in experiment. It will later
give us the opportunity to determine the transition line λu = λθ .

The scaling of this crossover line can be determined here from equating λθ ∼ L/Nu

and λu ∼ L/
√

Re in the respective regimes. We obtain

Pr Il−Iuλ ∼ Ra0, (2.35)

Pr IIl−IIuλ ∼ Ra0, (2.36)

Pr IIIl−IIIuλ ∼ Ra−1/2, (2.37)

Pr IVl−IVuλ ∼ Ra−1/3. (2.38)

Because the line λu = λθ obeys Pr = const in regime I it is either above or below the
common corner point of all four regimes. Therefore it can go either through regime
III or through regime II , but not through both. Thus either regime IIu will exist or
regime IIIl , never both of them.

We now calculate the scaling of the boundaries between the other different domains
in the Ra ,Pr phase space. The boundary between I and II is obtained by equating
εu,BL ∼ εu,bulk , that between I and III by equating εθ,BL ∼ εθ,bulk , etc. The results are

Pr Il−IIltrans ∼ Ra
2/3
trans , (2.39)

Pr Il−IIIltrans ∼ Ra−2
trans , (2.40)

Pr IIIl−IVltrans ∼ Ra1
trans , (2.41)

Pr IIl−IVltrans ∼ Ra−1
trans , (2.42)

Pr Iu−IIIutrans ∼ Ra3
trans , (2.43)

Pr IIIu−IVutrans ∼ Ra
2/3
trans . (2.44)

Note that all these lines indicate the range of smooth crossover in the dominance of
either the BL or the bulk dissipation.

The phase diagram in Ra ,Pr phase space with the various regimes and crossovers
is shown in figure 2, anticipating the prefactors of the power laws, whose exponents
we have evaluated up to now. We will determine the prefactors in (2.17)–(2.44) in
§ 4 from four pieces of experimental information. This experimental information all
comes from experiments with an aspect ratio of the RB cell of the order of 1. Based
on the work by Wu & Libchaber 1992, we expect the prefactors to depend on the
aspect ratio; therefore, all prefactors given in this paper only refer to aspect ratio
order of 1 experiments.

2.5. Range of validity of power laws

What is the range of validity of the power laws summarized in table 2? For too
small Reynolds numbers towards larger Pr , say, Recrit = 50, the distinction between
the bulk and the boundary layer is no longer meaningful; the bulk will no longer
be driven to turbulence by a large-scale velocity U. Correspondingly, if the Nusselt
number approaches 1 because of too small Pr , the splitting of εθ in εθ,BL and εθ,bulk

becomes meaningless. Finally, for Nu = 1, we no longer have thermal convection but
pure thermal diffusion.

Therefore, we impose the restrictions Re <∼ 50 towards large Pr and Nu >∼ 1
towards small Pr . The lines Re = 50 and Nu = 1 are included in the phase diagram
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Figure 2. Phase diagram in the (Ra ,Pr)-plane. The power laws and the corresponding prefactors
(to be determined in § 4) in the respective regimes are summarized in table 2. The tiny regime to
the right of regime Il is regime IIIl . The dashed line is λu = λθ . The shaded regime for large Pr is
where Re 6 50, and in the shaded regime for low Pr we have Nu = 1. The dotted line indicates
the non-normal-nonlinear onset of turbulence in the BL shear flow discussed in § 2.6. The scaling
in regime II ′l is therefore as in the bulk-dominated regime IVl . The power laws for the boundaries
between the different regimes are given in table 3.

figure 2. Their analytical forms directly follow from the power laws of table 2; they
are given in table 3.

Beyond these lines, in the shaded areas in figure 2, the flow is viscosity dominated or
thermal diffusivity dominated and the proposed power laws for Re and Nu (table 2)
no longer apply.

2.6. Turbulence transition of the laminar boundary layer

For very large Ra the theory outlined here requires an extension. It is based so far on
the existence of a laminar boundary layer flow of Blasius type; its thickness therefore
obeys λu ∼ LRe−1/2, cf. § 39 of Landau & Lifshitz (1987). The shear in this boundary
layer is determined by the large-scale velocity U of the thermal rolls in the RB cell and
the boundary layer width λu. We define the corresponding shear Reynolds number as

Reshear =
Uλu

ν
∼ √Re. (2.45)

The key issue now is that the laminar shear BL will become turbulent for large
enough Reshear . The details of the mechanism of this turbulence transition are still
under study but it seems to have non-normal-nonlinear features (see Drazin & Reid
1981; Boberg & Brosa 1988; Trefethen et al. 1993; Gebhardt & Grossman 1994;
Waleffe 1995; Schmiegel & Eckhardt 1997; Grossmann 1999). What however is
agreed upon is that the shear Reynolds number at which the turbulence sets in
depends on the kind and strength of the flow distortion. A typical value for the onset
is (see Landau & Lifshitz 1987)

Reshear ,turb = 420. (2.46)
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Regime Dominance of BL Nu Re

Il εu,BL, εθ,BL λu < λθ 0.27Ra1/4Pr1/8 0.037Ra1/2Pr−3/4

Iu λu > λθ 0.33Ra1/4Pr−1/12 0.039Ra1/2Pr−5/6

IIl εu,bulk , εθ,BL λu < λθ 0.97Ra1/5Pr1/5 0.47Ra2/5Pr−3/5

(IIu) λu > λθ (∼ Ra1/5) (∼ Ra2/5Pr−2/3)

IIIl εu,BL, εθ,bulk λu < λθ 6.43× 10−6Ra2/3Pr1/3 5.24× 10−4Ra2/3Pr−2/3

IIIu λu > λθ 3.43× 10−3Ra3/7Pr−1/7 6.46× 10−3Ra4/7Pr−6/7

IVl εu,bulk , εθ,bulk λu < λθ 4.43× 10−4Ra1/2Pr1/2 0.036Ra1/2Pr−1/2

IVu λu > λθ 0.038Ra1/3 0.16Ra4/9Pr−2/3

Table 2. The power laws for Nu and Re of the theory presented, including the prefactors which
are adopted from four pieces of experimental information in § 4. The exact values of the prefactors
depend also on how the Reynolds number is defined, see the first paragraph of § 4. Regime IIu is
in brackets as it turns out that it does not exist for this choice of prefactors.

Boundary between Prtrans

Il − IIl Prtrans = 4.3× 10−8Ra
2/3
trans

Il − IIIl Prtrans = 1.0× 1022Ra−2
trans

IIl − IVl Prtrans = 9.7× 1010Ra−1
trans

IIIl − IVl Prtrans = 9.1× 10−12Ra1
trans

Iu − IIIu Prtrans = 5.7× 10−33Ra3
trans

IIIu − IVu Prtrans = 4.8× 10−8Ra
2/3
trans

Il − Iu Prλ = 2.0Ra0
trans

IIIl − IIIu Prλ = 5.3× 105Ra
−1/2
trans

IVl − IVu Prλ = 7.3× 103Ra
−1/3
trans

Il-(Re = 50) Prtrans = 6.7× 10−5Ra
2/3
trans

Iu-(Re = 50) Prtrans = 3.0× 10−3Ra
3/5
trans

Il-(Nu = 1) Prtrans = 3.5× 104Ra−2
trans

IIl-(Nu = 1) Prtrans = 1.2Ra−1
trans

IIIu-(Re = 50) Prtrans = 2.9× 10−5Ra
2/3
trans

IIl-(BL-turbul.) Prtrans = 9.3× 10−12Ra
2/3
trans

IVl-(BL-turbul.) Prtrans = 3.4× 10−16Ra1
trans

IVu-(BL-turbul.) Prtrans = 2.3× 10−11Ra
2/3
trans

Table 3. Boundaries between the various regimes I to IV , towards the limiting regimes where
Nu = 1 (small Pr) and Re = 50 (large Pr), and the non-normal-nonlinear onset of shear turbulence
(last three lines, see § 2.6).

It will turn out that such high shear Reynolds numbers can only be achieved in
regimes II and IV ; in regimes I and III the large Reynolds numbers necessary for
the breakdown of the laminar shear BL are not achieved. With the information from
table 2 we obtain the corresponding line in the Ra ,Pr parameter space indicating the
laminar–turbulence onset range, namely

Prturb ∼ Ra
2/3
turb (2.47)

in regimes IIl and IVu (with different prefactors) and

Prturb ∼ Ra1
turb (2.48)
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Figure 3. Nu vs. Pr for fixed Ra = 106. The fit is based on all points. The expected power law

Nu ∼ Pr1/8 in regime Il is also shown (dashed). For larger Pr > 2 one enters regime Iu where

Nu ∼ Pr−1/12 (dashed) is expected.

in regime IVl . The corresponding prefactors will be calculated later, but for clarity
we have already included the characteristic lines which mark the onset to turbulence
in the BL in the phase diagram figure 2 as dotted line. Above, the RB rolls are still
laminar in the boundary layer, below the boundary layer is turbulent.

What power laws for Re and Nu are to be expected in the regime beyond the
turbulence transition of the laminar BL? One might argue that the destruction of the
BL laminarity means that both the kinetic and the thermal dissipation rates scale as
in the turbulent bulk. This implies that the scaling of Re and Nu should be the same
as in the bulk-dominated regime IV. In the phase diagram we called those regimes
II ′l , IV ′l , and IV ′u.

The same result is obtained by yet another argument: in a turbulent thermal
boundary layer (see Landau & Lifshitz 1987; Chavanne et al. 1997)

Lu∗
κ
∼ Nu log

(
Lu∗
κ

)
. (2.49)

With logarithmic precision the typical velocity scale u∗ of the fluctuations in the BL
is equal to the wind velocity U and therefore (2.49) implies Nu ∼ RePr . On the other
hand, still εu ∼ εu,bulk or NuRaPr−2 ∼ Re3. From these two relations one immediately
obtains the power laws (2.19) and (2.20), i.e. scaling as in regime IVl for all three
primed regimes II ′l , IV ′l , and IV ′u.

Still we feel that further study is necessary to obtain reliable insight into the
dissipation rate scaling in turbulent boundary layers. This might influence the scaling
exponents in the primed regimes II ′l and IV ′l,u.

3. Comparison with experiment: scaling exponents
3.1. Nusselt number

The first type of results of the theory which we would like to compare with experiments
is the scaling exponents. First, we focus on the Nusselt number.

For fixed Ra = 106 Nu seems to increase up to Pr ≈ 7, see figure 3. The fit to
the experimental data between Pr = 0.005 and Pr ≈ 7 gives Nu ∼ Pr0.13±0.02 in good
agreement with the predicted exponent 1

8
in regime Il . We note, however, that the

suggestion equation (1.1) by Cioni et al. (1997) is also consistent with experiment in
the small-Pr regime.
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Figure 4. Nu vs. Ra for fixed Pr = 1 (characterizing helium) according to the theory presented, i.e.
equation (3.1) (solid line). Also shown is the practically indistinguishable result Nu = 0.22Ra0.289 of
a linear regression of (3.1) (dashed line), which mimics a power law with an exponent close to 2

7
.

The increase with Pr seems to cease for Pr between 1 and 10. As stated above,
other experimental data by Belmonte et al. (1994) even suggest a decrease of Nu with
increasing Pr in that regime. This is compatible with and explained by the present
theory which gives a (Ra independent) transition from the Il regime with Nu ∼ Pr1/8

to the regime Iu with Nu ∼ Pr−1/12, both for fixed Ra .
As there is even a controversy in the literature on whether Nu for water with

Pr = 6.6 or Nu for helium gas with Pr = 0.7 is larger, it is hard to say where exactly
the transition from Il to Iu takes place. According to Cioni et al. (1997) it is fair
to say that within experimental accuracy Nu(Pr = 6.6) = Nu(Pr = 0.7). We adopt
this point of view and use it to calculate the transitional Pr , Pr Il−Iuλ , to be about
2. This experimental information thus defines the line λu = λθ in the phase space
and separates the lower subregime Il with λu < λθ from the upper subregime Iu with
λu > λθ .

Next, we compare the predicted scaling exponent γ of Nu vs. Ra , which in regime I
is according to our theory the same for the lower and the upper subregimes. For small
Pr (mercury, sodium) and (relatively) small Ra the theoretically obtained value γ = 1

4
for the scaling exponent of Nu vs. Ra has been measured in several experiments:
γ = 0.247 in Rossby (1969), γ = 0.26 ± 0.02 in Cioni et al. (1997), and γ = 0.25 in
Horanyi et al. (1999).

Also, regime IIl (intermediate Ra , low Pr) with γ = 1
5

seems to have been observed
by Cioni et al. (1997).

For larger Pr (helium, water) the measured scaling exponent is larger, γ ≈ 2
7
, see

table 1. Here we argue that this results from the superposition of the scaling in regime
I, with those in regimes IVu and IIIu. To substantiate this, we plot the expected Nu
vs. Ra dependence for Pr = 1,

Nu = 0.27Ra1/4 + 0.038Ra1/3, (3.1)

in figure 4. Here we have made use of the prefactors from table 2, which will be
calculated in the next section. Now we fit (3.1) with one power law in as large a range
as 105 6 Ra 6 1014. This fit which is nearly indistinguishable from the superposition
(3.1) reads

Nu = 0.22Ra0.289. (3.2)
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The power-law exponent is very close to 2
7

= 0.286 and definitely consistent with the
experimental data of table 1. Changing the fit range of course changes the exponent of
the power law (3.2). For example, for a linear regression in the range 106 < Ra < 1011

which is typical for many experiments one obtains Nu = 0.24Ra0.285, i.e. an exponent
which is even closer to 2

7
.

By plotting compensated plots or local slopes d log10 Nu/d log10 Ra as done in
figure 5 for (3.1) one may be able to get hints that there is no pure power law. Note
that on first sight a compensation with Ra2/7 may erroneously even be considered as
‘better’.

Chavanne et al. (1997) find hints of a transition to a regime with a visibly larger
scaling exponent. According to our theory this could be regime IIIu or IVl or IV ′l
or, most likely, a mixture of all of them. No clean scaling exponent could hitherto be
determined experimentally. One reason is that in that regime both Ra and Pr change.
We will discuss the possible nature of this transition below. Also figure 3 of Siggia
(1994) suggests such a transition.

We now turn to the large-Pr regime. There are very few data for large Pr � 1.
Recently, Ashkenazi & Steinberg (1999) performed convection experiments with SF6

close to its critical point. In these experiments both Ra and Pr change considerably
at the same time. To what degree the RB convection is still Boussinesq close to the
critical point is extensively discussed in Ashkenazi & Steinberg (1999).

Ashkenazi & Steinberg obtain Nu = 0.22Ra0.3±0.03Pr−0.2±0.04 in 109 6 Ra < 1014

and 1 6 Pr 6 93. Based on the phase diagram 2 we judge that for these ranges of
Ra and Pr we should be in regimes Iu and IIIu. From table 2 we see that the Ra
exponent of Nu is 1

4
and 3

7
, respectively. The measured exponent of 0.3 ± 0.03 in

between is consistent with this. The Pr exponent of Nu is expected to be in between
− 1

12
and − 1

7
, slightly smaller (modulus-wise) than the value of −0.2 ± 0.04 reported

in Ashkenazi & Steinberg (1999).
The results of this subsection clearly demonstrate the importance of superimposing

the power laws of adjacent phase-space regimes. This can really mimic different
scaling behaviour, as demonstrated in figures 4 and 6. This characteristic feature
holds because the power-law exponents of neighbouring regimes are rather similar.
They will commonly appear if data in a crossover range are examined. We emphasize
that these crossover ranges appear to be rather extended, reaching well into the
corresponding regimes, due to the small differences of the scaling exponents.

Therefore, rather than writing pure power laws, one should allow for superpositions.
Table 2 suggests

Nu ∼ Ra1/4Pr1/8

1 +



cIIIu Ra5/28Pr−15/56 + · · ·
cIVu Ra1/12Pr−1/8 + · · ·
cIVl Ra1/4Pr3/8 + · · ·
cIIl Ra−1/20Pr3/40 + · · ·

 (3.3)

and

Re ∼ Ra1/2Pr−3/4

1 +



c′IIIu Ra1/14Pr−3/28 + · · ·
c′IVu Ra−1/18Pr1/12 + · · ·
c′IVl Pr1/4 + · · ·
c′IIl Ra−1/10Pr3/20 + · · ·

 , (3.4)
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Figure 5. Nu from (3.1), compensated by two different power laws: Ra1/4 (solid, as suggested by

the present theory for the low-Ra regime) and Ra2/7 (dashed). The second is hardly distinguishable
from a straight line, i.e. pure 2
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scaling. The inset shows the local slope following from (3.1).
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Figure 6. Re vs. Ra for mercury, Pr = 0.025. The solid line shows the theoretical superposition

0.59Ra1/2 + 4.30Ra2/5 which is very well fitted by a straight line Re = 3.5Ra0.446 (dotted, practically
indistinguishable from the solid line; the fit interval is Ra = 106 to Ra = 4×109 as in the experiment).
The dashed line presents Cioni et al.’s fit through their data Re ∝ Ra0.424. The prefactors cannot
be compared because of the different definitions of the Reynolds number in Chavanne et al. (1997)
and Cioni et al. (1997), see § 4, first paragraph.

respectively. Here, we have separated the exponents of regime Il . Which of these
corrections and how many are to be taken depends on Pr and on the aspect ratio.
Locally, i.e. for a limited Ra range, the suggested Nu vs. Ra power-law exponents
γ = 2

7
(Castaing et al. 1989; Shraiman & Siggia 1990) (cf. figure 2 of Chavanne et al.

1997 or figure 3 of Siggia 1994), or γ = 5
19

suggested by Yakhot (1992) can still be
considered as an appropriate representation of the experimental data. Globally, for
larger Ra intervals, however, we claim that (3.3) is a better description.

In previous publications Nu , compensated by the expected scaling Ra2/7, was
plotted against Ra in a log-log plot, see figure 2 of Chavanne et al. (1997). From
that plot one realizes that the 2

7
-scaling is slightly too steep between Ra = 106 and
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Figure 7. Compensated Nu vs. Ra data for Pr from about 1 to about 20 (helium, upper, data
taken from Chavanne et al. 1997; the higher Ra experiments also have higher Pr) and Pr = 0.025
(mercury, lower, taken from Cioni et al. 1997). Also shown are the calculated exponents in the

large-Ra regimes. We also drew the theoretical curve Nu = 0.33Ra1/4Pr−1/12+3.43×10−3Ra3/7Pr−1/7

with fixed Pr = 3 to demonstrate that it roughly describes the data. If the expected Pr dependence
is considered, the agreement becomes even better.

Ra = 108 and not steep enough beyond the crossover at Ra = 1011. The analogously
compensated plot with the expected scaling (2.31) is shown in figure 7. Now (for
Pr ≈ 1) one obtains a horizontal line up to Ra ≈ 109, showing that (2.31) nicely
agrees with the data. However, beyond Ra ≈ 109 one observes deviations. We suggest
that these corrections originate from the different scaling in the neighbouring regime
IIIu. The reason that it is regime IIIu (and not regime IVu) is that in the Chavanne
et al. experiments the large-Ra measurements also have large Pr; the trajectory in
control parameter space Ra ,Pr is not a straight line. At Ra = 1010 one typically has
Pr ≈ 1, but at Ra = 1014 Chavannve et al. typically have Pr ≈ 10–20. The power
law exponent 5

28
, following from table 2, is consistent with the experimental data for

large Ra , see figure 7.
For the mercury data of Cioni et al. (1997) we do not have such a complication

as Pr = 0.025 is roughly constant for all chosen Ra . As plotted in figure 7, lower
curve, we observe a straight line up to about 2 × 108 and then a decay, signalling
contributions from regime IIl . The power law exponent − 1

20
of the correction term

in (3.3) is consistent with the data shown in figure 7.
A more stringent way to test the superpositions of type (3.3) is to make a linear

plot Nu/(Ra1/4Pr1/8) vs. Ra5/28Pr−15/56 or vs. Ra1/12Pr−1/8 or vs. Ra1/4Pr3/8, etc.,
depending on from which neighbouring regime the corrections originate. This is done
in figure 8, assuming, as argued above, that the most relevant corrections originate
from regime IIIu. If the theory is correct, the data points must fall on a straight line.
Indeed, they do so with satisfying precision.

Note that this kind of linear plot is very sensitive to what combinations of Ra and
Pr are chosen as x- and y-axes. For example, plotting Nu/(Ra1/4Pr1/8) vs. Ra1/4Pr3/8

(the subleading correction characterizing regime IVl) does not lead to a straight line
at all, see the inset of figure 8. Clearly the variable Ra5/28Pr−15/56 on the abscissa
is superior, adding confirmation that the large-Ra experiments by Chavanne et al.
(1997) represent the physics of regime IIIu.
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Figure 8. Same data as in figure 7, but now in a linear plot Nu/(Ra1/4Pr1/8) vs. Ra5/28Pr−15/56,
revealing the quality of the superposition (3.3), high-Pr , regime IIIu. The linear fit (straight line)

gives Nu/(Ra1/4Pr1/8) = 0.24 + 3.3× 10−3Ra5/28Pr−15/56. The data points are taken from Chavanne
et al. (1997), with kind permission by the authors. Only data points with Ra > 106 are considered.

Note that in this plot Pr varies as much as 0.6 < Pr < 100. The inset shows Nu/(Ra1/4Pr1/8) vs.

Ra1/4Pr3/8; this variable had to be used if regime IVl contributes the most relevant correction.
The data do not fall on a straight line. A similar failure results with the regime IVu-compensated

variable Ra1/12Pr−1/8.

3.2. Reynolds number

We now consider the experimental values for the scaling exponents α of the Reynolds
number vs. the Rayleigh number. For Pr ≈ 7 (water) Xin et al. (1996) find α =
0.50± 0.01 and Qiu & Xia (1998) find α = 0.50± 0.02. Both experiments were done
in the Ra interval between 2 × 108 and 2 × 1010, i.e. in regime Iu, where exactly this
power law exponent α = 1

2
is expected. For Pr ≈ 1 both Castaing et al. (1989) and

Chavanne et al. (1997) find α = 0.49 for all Ra which suggests that possibly the
regimes Il and IVl are seen where this value is predicted, and (according § 3.1) also
regime IIIu, where the exponent is only slightly higher ( 4

7
). For Pr = 0.025 (mercury)

Cioni et al. 1997 find α = 0.424 from a fit to all available Ra . This value is in between
the derived values α = 1

2
in regime Il and α = 2

5
in regime IIl .

We compare this experimental finding Re ∝ Ra0.424 (based on a fit to the data
in the range up to Ra = 4 × 109 by Cioni et al. 1997) with the Il–IIl superposition
according to table 2

Re = 0.59Ra1/2 + 4.30Ra2/5, (3.5)

cf. figure 6. In this relatively short Ra interval the theoretical superposition (3.5) is
again hardly distinguishable from its straight line fit

Re = 3.5Ra0.446 (3.6)

whose exponent agrees reasonably well with the measured one.†
Moreover, the theoretically obtained Pr dependence of Re also agrees very nicely

with available experimental information: Chavanne et al. (1997) did experiments

† The absolute values of the Reynolds numbers cannot be compared here, as the Reynolds
number definitions in Cioni et al. 1997 and Chavanne et al. (1997) cannot be translated into each
other, see the first paragraph in § 4.
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Figure 9. Data for the Reynolds number as a function of Ra and Pr from Chavanne et al. (1997),

with very kind permission of the authors. (a) Re/Pr−3/4 vs. Ra . The expected slope (in regimes

Ie,u and IVe) is 1
2
, the linear regression fit (solid line) gives 0.492 ± 0.002. (b) Re/Ra1/2 vs. Pr .

The expected slope is − 3
4

for Pr 6 2 (regime Il) and − 5
6

for Pr > 2 (regime Iu). The linear
regression fit (dashed line) gives −0.77 ± 0.01. The agreement of the prefactor is also excellent.

According to theory, following table 2 it is log10(Re/Ra1/2) = −1.432 − ( 3
4
) log10 Pr (solid line,

hardly distinguishable from the dashed one); the fit value for the prefactor from linear regression is
−1.413± 0.005. According to § 3.1, the large-Pr data, when Ra is also large, may be in regime IIIu
and the slope should be slightly steeper (−6/7).

with (slightly) varying Pr . They then plotted RePr0.72 vs. Ra and obtained the law
RePr0.72 = 0.0374Ra1/2. The exponent 0.72 of the Prandtl number was determined
by minimizing the scattering of points around a straight line in the log-log plot.
It agrees very well with the calculated Pr scaling exponent 3

4
in (2.32) (regime Il).

A possible reason for the slight difference between theory and data fit is that part
of the experimentally realized Ra and Pr already belong to regimes IIIu and IVu,
where according to (2.20) and (2.22) the expected Pr scaling exponent is 6

7
and 2

3
,

respectively. However, the deviation is clearly within the experimental uncertainty. In
figure 9 we replot the experimental Reynolds number data of Chavanne et al. (1997).
In figure 9(a) we show Re/Pr−3/4 vs. Ra . The fit gives a Ra exponent 0.492 ± 0.002
in very good agreement with the theory’s exponent 1

2
of regimes I and IVl; that of

regime IIIu is slightly larger (4/7). In figure 9(b) we display Re/Ra1/2 vs. Pr . The
data fit results in a Pr exponent −0.77 ± 0.01, also in excellent agreement with the
theoretical expectation which is − 3

4
in Il and − 5

6
in Iu.
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The large Ra values in both figures 9(a,b) will turn out to belong to the regimes
IIIu (see also §3.1 on the Nusselt number) and IVu, where the Pr-scaling is similar.
The available range is too small to perform a more detailed comparison.

The only large-Pr data available are again those by Ashkenazi & Steinberg (1999).
They obtain Re = 2.6Ra0.43±0.02Pr−0.75±0.02 in 1012 6 Ra < 3×1014 and 27 6 Pr 6 190.
The expected Ra exponent of Re is between 1

2
and 4

7
, distinctly larger than the

measured one of 0.43± 0.02. Similarly, the theoretically expected Pr exponent of Re
is between − 5

6
and − 6

7
, also larger than the measured exponent −0.75 ± 0.02. We

have no explanation.

4. Prefactors
4.1. Experimental input to determine the prefactors

To obtain the values of the prefactors in the power laws within the presented scaling
theory, we need further input from experiment. But what data to choose? As pointed
out in the introduction, a huge variety of data is around, often disagreeing with each
other even in the scaling exponents, not to speak of prefactors. Those often vary by as
much as 50% from experiment to experiment, even for cells with the same aspect ratio.
Another reason which makes the adoption of one experiment and the comparison to
others difficult is that different definitions are used for the Reynolds numbers. For
example, Cioni et al. (1997) define the Reynolds number as Re = 4L2fp/ν, where fp
is a distinguished frequency at the small-frequency end of the temperature spectrum.
Chavanne et al. (1997) define Re = ω0dL/ν, where ω0 is a typical frequency in the
cross-correlation spectrum of two temperature signals, measured at a vertical distance
of d = 2.3 mm and 2 cm off the axis of the cell.

In spite of these difficulties, we decided to calculate the prefactors of the suggested
scaling laws by employing the following choice for the input information as a reason-
able, realistic example. Our reasons are first to be able to draw a phase diagram with
more or less realistic values and second to stress the importance of the prefactors. But
we caution the reader that our input choice is somewhat arbitrary; other possibilities
can equally well be rationalized, sometimes shifting the various regime boundaries
considerably.

Above, as an input from experiment, we had chosen Prλ = 2 as the Prandtl number
for which Nu is maximal (for fixed Ra = 106, cf. figure 3). In addition, we will use
the following experimental information:

(a) the observed transition Rayleigh number for the transition from regime Il to
regime IIIl , Ratrans = 1011 at Pr = 1 by Chavanne et al. (1997);

(b) the observed transition Rayleigh number for the transition from regime Il to
regime IIl , Ratrans = 4.5× 108 at Pr = 0.025 by Cioni et al. (1997);

(c) the experimental values, taken from Chavanne et al. (1997), for the Reynolds
and the Nusselt number at the middle point (RaM,PrM) in the phase diagram figure 2;

(d) the prefactor 0.0372 of the scaling law Re = 0.0372Ra1/2Pr−3/4 measured in
regime Il , taken from Chavanne et al. (1997).

Information (a) specifies the prefactor of the right-hand side of (2.40) (which we call
cIl−IIIl ) to be cIl−IIIl = Pr Il−IIIltrans /Ra−2

trans = 1.0×1022. Information (b) gives the prefactor

of the right-hand side of (2.39) (which we call cIl−IIl ) to be cIl−IIl = Pr Il−IIltrans /Ra
2/3
trans =

4.3× 10−8. The two curves (2.39) and (2.40) cross at

(RaM,PrM) = (1.03× 1011, 0.94). (4.1)

This middle point (RaM,PrM) is defined by the conditions εu,BL = εu,bulk = εu/2 and
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εθ,BL = εθ,bulk = εθ/2. Equation (4.1) specifies the prefactors of the right-hand sides of
(2.41) and (2.42) to be cIIIl−IVl = 9.1× 10−12 and cIIl−IVl = 9.7× 1010, respectively. We

see that Pr Il−Iuλ = 2 > PrM = 0.94 so that there is a regime IIIl , but no regime IIu, as

already anticipated. The line Pr Il−Iuλ = 2 hits the boundary between I and III at

(RaM ′ ,PrM ′) = (7.1× 1010, 2.0), (4.2)

which fixes the prefactors of (2.43) and (2.37) to be 5.7 × 10−33 and 5.3 × 105,
respectively. Correspondingly, one obtains the prefactors of (2.44) and (2.38) to be
4.8× 10−8 and 7.3× 103, respectively. These are the data on which the phase diagram
figure 2 is based; they are summarized in table 3.

Apart from IIIl all regimes turned out to extend at least one decade of both in Ra
and in Pr and should therefore in principle be visible. However, we should always
expect one or more subleading corrections. Regime IIIl will clearly not be detectable.

We again stress how dependent this phase diagram drawn in figure 2 is on the
choice of experimental information. For example if we had adopted the point of view
by Glazier et al. (1999) that there is no transition towards a steeper Ra dependence
of Nu at least up to Ra = 8× 1010, regimes II and IV would have shifted further to
the right or would even not exist at all. But as shown in figure 4, apparent smooth
scaling behaviour does not allow a transition to be excluded.

Making use now of the experimental information (c) and (d) we can calculate the
prefactors in the power laws for Nu and Re. From figures 2 and 3 of Chavanne
et al. (1997) we can extract the Reynolds and Nusselt numbers at the middle point
(RaM,PrM) of the phase diagram which touches all four regimes, namely

ReM = 1.20× 104, NuM = 2.78× 102, (4.3)

which is information (c) above. The definition of the middle point (RaM,PrM), i.e.
the conditions εu,BL = εu,bulk = εu/2 and εθ,BL = εθ,bulk = εθ/2, allows us to calculate
the prefactors cεu,bulk , cεθ,bulk , and cεu,BL on the right-hand sides of (2.11), (2.12), and
(2.14), respectively. One obtains

cεu,bulk =
NuMRaM

2Pr2
MRe3

M

= 9.38, (4.4)

cεθ,bulk =
NuM

2PrMReM
= 0.0123, (4.5)

cεu,BL =
NuMRaM

2Pr2
MRe

5/2
M

= 1028. (4.6)

Finally, the prefactor cNu on the right-hand side of relation (2.17) is adopted from
Chavanne et al.’s (1997) experimentally determined prefactor (see figure 3 of that
paper) in the relation (2.32), i.e. Re = 0.0372Ra1/2Pr−3/4 valid throughout regime Il
(information (d) above). In that regime εu,BL = εu; with (2.5), (2.14), and (4.6) we get

cNu = (3.72× 10−2)2cεu,BL = 1.42. (4.7)

The prefactors referring to the upper half of the phase diagram are calculated from
the matching conditions for Re and Nu on the λu = λθ line. With (4.4)–(4.7) and the
matching conditions now all prefactors of the power laws in the four different regimes
are determined. We have summarized all these power laws in table 2.
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Note that from the condition λu = λθ for Pr = 2 the prefactor of (2.8) is also
obtained. It is 0.25, i.e. λu = 0.25LRe−1/2. Also the prefactors to the Nu = 1 and the
Re 6 50 borders of validity and the crossover lines to turbulence of the laminar BL
flow automatically follow, and are included in table 2.

4.2. Comparison of the evaluated prefactors to experiment

We now would like to compare the absolute agreement of the power laws summarized
in table 2, whose prefactors result from an adoption to the above four pieces of
experimental information, with further experimental data. We first focus on the
Chavanne et al.’s (1997) RB measurements in helium gas. From the previous section
we know that in these experiments due to the large Pr at large Ra it is mainly regime
IIIu which causes additional contributions to regime Il . Therefore, we have plotted
the superposition Nu = 0.33Ra1/4Pr−1/12 + 3.43 × 10−3Ra3/7Pr−1/7 with Pr = 3
on figure 7. We again stress that in the experiments Pr is not constant at all.
Nevertheless, the data are satisfactorily described. Note that the solid curve in figure 7
is no fit!

A much better way to check whether the prefactors of the theory obtained agree
with the measured ones is to do a linear regression of the straight line as in figure 8.
Such a straight line fit gives Nu/(Ra1/4Pr1/8) = 0.24 + 3.3 × 10−3Ra5/28Pr−15/56. The

prefactors found are in good agreement with the expectation Nu/(Ra1/4Pr1/8) =

0.27 + 3.43× 10−3Ra5/28Pr−15/56 from table 2.
We also compare the theoretical prefactors of the Reynolds number scaling in

regime Il with experiment. As the theoretical prefactors have been adopted from
the experimental Re/Pr−3/4 vs. Ra power law, it only makes sense to check the

prefactors in Re/Ra1/2 vs. Pr . From table 2 in Il the expected slope is − 3
4

and the

expected prefactor 0.037; in Iu the expected slope is − 5
6

and the expected prefactor
is 0.039. Linear regression of the whole regime Il + Iu gives a slope of −0.77 ± 0.01
and a prefactor of 10−1.413±0.005 = 0.0386, cf. figure 9. It is of course more correct
to fit the two regimes separately: linear regression of the regime Il gives a slope
of −0.81 ± 0.04 and a prefactor of 0.038; linear regression of the regime Iu gives a
slope of −0.81 ± 0.03 and a prefactor of 0.042, all values being consistent with the
expectation.

Next, we compare the experimental Nu vs. Ra scaling for mercury with Pr = 0.025
with theory. The measured relations Nu = (0.140 ± 0.005)Ra0.26±0.02 by Cioni et al.
(1997), Nu = 0.147Ra0.257 by Rossby (1996), and Nu = 0.155Ra0.27 by Takeshita et al.
(1996) are all in reasonable agreement with the regime Il expectation Nu = 0.17Ra1/4

from table 2. The same holds for a comparison in regime IIl: the reported experimental
fit is Nu = 0.44± 0.015Ra0.20±0.02 (see Cioni et al. 1997), theory gives Nu = 0.46Ra1/5,
again, remarkable agreement of both the power-law exponent and the prefactor.
Remember that the only experimental input from this experiment into the theory is
RaIl−IIltrans = 4.5× 108.

Let us also check the prefactors of Nu as a function of Pr for fixed Ra = 106. A
power-law fit to all available experimental data points taken from Cioni et al. (1997)
and Horanyi et al. (1999) included in figure 3 gives Nu = (7.8±0.5)Pr0.13±0.02 which is in
agreement with the theoretical expectation Nu = 0.27Ra1/4Pr1/8 = 8.5Pr1/8 in regime
Il . Leaving out the data points for water (Pr = 7) which already belongs to regime
Iu gives a slightly larger power-law exponent and a slightly larger prefactor, Nu =
8.7Pr0.16. But both exponent and prefactor are still consistent with the theoretical
expectation.



50 S. Grossmann and D. Lohse

–2

–4

–2

–4

5 10 15

log Ra

lo
g

(k
h,

u
/L

)
lo

g
(k

h,
u
/L

)

–1/4

–1/4

–1/5

–1/5

–1/2

–1/4

ku

kh

–1/4

–1/4 –2/7

–3/7

–1/3

–2/9

Pr =7.0

Pr = 0.025

Figure 10. Widths of the boundary layers λθ = 0.5LNu−1 (solid) and λu = 0.25LRe−1/2 (dashed) for
mercury (Pr = 0.025, upper) and water (Pr = 7.0, lower). The dotted lines show the thicknesses y0

of the viscous sublayers of a turbulent boundary layer, calculated according to (4.10). Such a width
is expected beyond the non-normal-nonlinear transition to turbulence of the laminar shear BL (cf.
§ 2.6).

4.3. Widths of the boundary layers

As stated above, the present theory also gives the absolute widths of the thermal and
the laminar viscous boundary layers,

λθ = 0.5LNu−1, (4.8)

λu = 0.25LRe−1/2. (4.9)

The results for the widths of the BLs for Pr = 0.025 (mercury) and Pr = 7.0 (water)
are shown in figure 10. In both cases there are three regimes involved, namely Il , IIl ,
and IVl for Pr = 0.025 and Iu, IIIu, and IVu for Pr = 7.0. As expected, for the larger
Pr the thermal boundary layer is always nested in the viscous one which agrees with
the experimental observations by Belmonte et al. (1994). For the lower Pr it is the
other way round.

If the laminar BL becomes turbulent, the Blasius estimate λu ∼ LRe−1/2 for its
width must be replaced by the thickness of the turbulent BL. To give an idea of this
length scale, we calculate the width y0 of the viscous sublayer of the turbulent BL
within the Prandtl theory (see Landau & Lifshitz 1987), applied to Couette flow. In
the large-Re limit (see again Landau & Lifshitz 1987 and our unpublished material
on the prefactor)

y0

L
= 1.38

log (k2Re)

k2Re
. (4.10)

Here, k = 0.4 is the experimentally known von Kármán constant. We have included
y0/L in figure 10 for the relevant large Ra . The turbulent viscous sublayer is thiner
than the laminar BL. One also notes that for the larger Prandtl number Pr = 7
(water) the assumption by Shraiman & Siggia (1990) of the thermal boundary layer
being nested in the turbulent one is just fulfilled. For lower Pr this is not the case
any more.

Many experiments justify the identification of the thermal BL width with the
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inverse Nusselt number, λθ = 0.5LNu−1. For a detailed discussion we refer to the
review articles or to Belmonte et al. (1994) or to the more recent work by Lui & Xia
(1998).

The situation is more complicated for the width of the kinetic BL λu. Its measure-
ment is experimentally difficult. Moreover, experimental results on λu seem to exist
only for regime I .

Belmonte et al. (1994) tried to measure λu in an indirect way, namely through the
detection of a spectral cutoff frequency in gas convection which in water convection
(at one Ra) is found to have a similar dependence on the height z in the RB
cell as the velocity profile U(z). For Pr ≈ 1 they found λu ≈ const in the range
2 × 107 6 Ra 6 2 × 109 and λu ∼ LRa−0.44±0.09 in 2 × 109 6 Ra 6 1011. We have no
idea about the origin of the measured scaling exponents.

More recently, Xin et al. (1996), Xin & Xia (1997), and Qiu & Xia (1998) measured
the thickness of the kinetic BL in a water cell in a more direct way. They define λu
as the distance from the wall at which the extrapolation of the linear part of the
velocity profile U(z) equals the maximum velocity U = maxzU(z), the velocity of the
large-scale wind. In the interval 2 × 108 6 Ra 6 1010 they find λu ∼ LRa−0.16±0.02

for the thickness of the top and bottom kinetic BL (see Xin et al. 1996; Xin & Xia
1997) and λu ∼ LRa−0.26±0.03 for the thickness of the kinetic BLs at the sidewalls (see
Qui & Xia 1998). The first exponent (for the top and the bottom plates) is different
from the value from this theory λu ∼ LRa−1/4. The power law for the thickness of
the kinetic BLs at the sidewalls, however, is in good agreement with the expectation
λu ∼ LRa−1/4.

We can only speculate on the origin of this discrepancy of the scaling exponent of
the width of the bottom and top walls. Perhaps, if λu is defined as the distance of
the velocity maximum to the wall, the Ra-scaling would be different. The different
scaling exponents at the top/bottom walls and at the sidewalls may also reflect the
role of the plumes at the top/bottom wall which are not explicitly embodied in the
present theory.

In any case, the experimentally found very weak dependence of λu on Ra supports
the assumed laminar nature of the kinetic BL, apart from possible intermittent bursts
through plumes. However, if the width of the BL were identified with the width y0

of the viscous sublayer of a turbulent BL, one would expect a stronger dependence
on Re, namely y0 ∼ L log (k2Re)/(k2Re) (see Landau & Lifshitz 1987), i.e. when

neglecting logarithmic corrections, one would have y0 ∼ L/Re ∼ LRa−1/2.

4.4. Experimental evidence for the turbulence onset in the BL

According to the presented theory with the chosen prefactors the breakdown of
laminarity in the shear BL happens at Raturb ≈ 1016 for Pr = 1 and Raturb ≈ 1014 for
Pr = 0.025. These values are calculated from table 3. Hitherto, there have been no
experiments on these regimes.

However, one may want to argue that the transition to a turbulent shear BL may
already occur earlier, be it because of a different aspect ratio, or, in view of more
recent work by Eckhardt & Mersmann (1999) and Schmiegel & Eckhardt (1999),
because the critical Reynolds number (which we had assumed to be 420, cf. (2.46))
is smaller, or because of a different choice of the experimental input information
from which the prefactors of the theory are adopted. For example, if one assumes a
laminar shear layer with width λu = 1.72L/

√
Re as suggested by Landau & Lifshitz

1987, section 39), for the (related) case of a flat-plate shear flow, the transition to
turbulence in the shear BL has already occured at Raturb = 1013 (for Pr = 4). We note
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that this is just at about that Ra where Procaccia et al. (1991) measured a marked
transition in the (thermal) dissipative spectral power by a probe placed in the BL.
This transition was towards a weaker increase with Ra .

In the context of this section we also interpret the above-mentioned recent exper-
iment by Ciliberto & Laroche (1999) in which the boundary layers are disturbed by
constructing a rough bottom plate with a mean roughness comparable to the thermal
boundary layer thickness. The experiments are performed in water. According to the
theory of this paper one would expect larger bulk contributions to both the thermal
and the kinetic dissipation and therefore an earlier onset of regimes III ′u and IV ′u.
Indeed, experimentally the increase of Nu with Ra is found to be much steeper. For
the experiment described by Ciliberto & Laroche (1999) the data can be fitted to
power laws Nu ∼ Ra0.35 or Nu ∼ Ra0.45, depending on the features of the rough
bottom and upper plate.

5. Summary and conclusions
We summarize the central ingredients of the theory presented in this paper. The

scaling laws for the Nusselt number and the Reynolds number are based on the
decomposition of the global thermal and kinetic energy dissipation rates into their
BL and bulk contributions. These in turn are estimated from the dynamical equations,
taking the wind U as the relevant velocity in the heat conduction cell. The resulting
estimates are inserted into the rigorous relations (2.5) and (2.6) for the global kinetic
and thermal energy dissipation, respectively. Four regimes arise, depending on whether
the bulk or the BL contributions dominate the two global dissipations. Each of the
four regimes in principle divides into two subregimes, depending on whether the
thermal BL (of width λθ) or the kinetic BL (of width λu) is larger.

In addition to these main regimes there is a range for very large Pr in which the
wind Reynolds number is 6 50; here the whole flow is viscosity dominated, and the
theory loses its applicability. There also is the range of very small Pr in which Nu
goes down to Nu = 1, and again the theory no longer holds. Finally, for large Ra the
laminar kinetic BL becomes turbulent. Beyond turbulence onset we feel the flow is
bulk dominated.

All scaling exponents follow from this theory. If one in addition introduces only
four pieces of experimental information, all the prefactors can also be determined.
Therefore the theory has predictive power not only for the power-law exponents
but also for the prefactors. These, however, depend on the chosen experimental
information input. To confirm the prefactors more input information for various
aspect ratios is necessary.

The phase diagram of the theory, the main result of this work, is shown in figure 2.
The power laws with the prefactors based on the chosen experimental information
are summarized in table 2, the power laws of the boundaries between the different
regimes in table 3.

A detailed comparison of the theoretical power-law exponents and the prefactors
with the experimental data gives reasonable and encouraging agreement. We empha-
size that to accurately account for the dependences of Nu and Re on Ra and Pr single
power laws are often not sufficient, as additive corrections from neighbouring regimes
can be considerable. This can be viewed as one of the main insights obtained in this
paper. A particularly striking example is that Nu = 0.27Ra1/4 + 0.038Ra1/3 mimics a
2
7

power-law scaling over at least nine order of magnitude in Ra , see figure 4.
The theory also offers a possible explanation why a transition to a steeper increase
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of Nu vs. Ra is seen in the data by Chavanne et al. (1997), but not in the Chicago
group data (Castaing et al. 1989; Wu 1991; Procaccia et al. 1991). It may be that
in the large-Ra Chicago experiments Pr was smaller than in the measurements by
Chavanne et al. (1997). Then for the Chicago data one should expect a transition
towards regime IVu† where the Ra scaling exponent is 1

3
and thus, as demonstrated,

superposed on the leading 1
4

exponent, is indistinguishable from a 2
7

scaling. In the
Chavanne et al. (1997) experiments, on the other hand, one has the transition to
the large-Pr regime IIIu where the Ra scaling exponent is 3

7
which is much more

distinguishable from 1
4
. Whether this explanation is true remains to be seen.

What we consider as most serious discrepancy between the theory presented and
the available data is the measured weak Ra dependence of the width of the kinetic
BL at the top and bottom walls, λu ∼ LRa−0.16±0.02 (Xin et al. 1996; Xin & Xia
1997), whereas this theory predicts λu ∼ LRa−1/4 (which coincides with the measured
result at the sidewalls (Qiu & Xia 1998)). Perhaps by explicitly embodying plumes
and fluctuations in the kinetic BL this discrepancy can be resolved. Note again that
for Ra at least up to order of 1011 the kinetic BL layer cannot be turbulent. If so,
this would even imply λu ∼ LRa−1/2.

Finally, we want to stress and discuss one of the basic assumptions of the theory,
namely, that a large-scale ‘wind of turbulence’ exists, defining the Reynolds number
Re = UL/ν, creating a shear BL and stirring the turbulence in the bulk. Clearly, this
assumptions breaks down in the shaded area in figure 2 beyond the line Re = 50
where the flow is viscosity dominated. But even below this line we do not exclude
that the convection rolls break down and that the heat is exclusively transported by
the fluctuations. For example for a water cell (Pr ≈ 7) Tanaka & Miyata (1980) do
not note the wind of turbulence, in contrast to Zocchi et al. (1990), who do observe it
in their experiment with only a slightly lower aspect ratio. Also all latest experiments
with various aspect ratios do detect the wind of turbulence (see Belmonte et al. 1994;
Xin et al. 1996; Qiu & Xia 1998; Lui & Xia 1998) whose existence we therefore
consider as a weak – and in particular controllable – assumption. By the way, the
direction of the wind may even vary over time.

The present theory does not make any statement about how the heat is transported
from the bottom to the top, i.e. whether it is mainly convective transport or mainly
transport through plumes as suggested by Belmonte et al. (1994) and by Ciliberto
et al. (1996). Both processes may contribute, as both create thermal and viscous
dissipation.

For even larger Prandtl numbers Pr � 7, the spontaneous formation of a wind of
turbulence may seem more and more unlikely. To initiate such a wind so that this
theory can be applied and results can be compared we suggest slightly tilting the RB
cell, thus breaking the symmetry and creating a preferred direction for the wind of
turbulence. If this wind can be created, we are confident that the suggested theory
holds, but for further verification more experiments are required.
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Note added in proof. In a very recent experiment by J. J. Niemela, L. Skrbek, K. R.
Sreenivasan & R. J. Donelly (“Turbulent convection at very high Rayleigh numbers”,
preprint, 1999) the Nusselt number has been measured up to Ra = 1017 and even
beyond! A power-law exponent γ = 0.309 was determined. Fitting equation (3.1) in
the Ra regime of 106 up to 1017 results in an effective exponent of 0.297, close to
the experimental result. Ra and Pr are such that for large Ra regime IVu is probed.
Indeed, a linear plot of Nu/(Ra1/4Pr1/8) vs. Ra1/12Pr−1/8 gives a perfect straight line
up to about Ra = 1016, confirming the corresponding part of equation (3.3). Beyond
Ra = 1016, non-Boussinesq effects may play a role.
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